Heap-Algorithmen und Muster
Meistern Sie gängige algorithmische Muster mit MinHeap und MaxHeap.
Die K größten Elemente finden
Die K größten Elemente aus einem Stream oder Array effizient finden.
Mit MinHeap
import { MinHeap } from '@msnkr/data-structures';
function findKLargest(arr: number[], k: number): number[] {
const minHeap = new MinHeap<number>();
for (const num of arr) {
minHeap.insert(num);
// Nur k größte Elemente behalten
if (minHeap.size > k) {
minHeap.remove(); // Kleinstes entfernen
}
}
// In absteigender Reihenfolge zurückgeben
return minHeap.toArray().sort((a, b) => b - a);
}
const numbers = [3, 1, 5, 12, 2, 11, 9, 7, 4, 8];
console.log(findKLargest(numbers, 3)); // [12, 11, 9]
Zeitkomplexität: O(n log k), wobei n die Array-Länge ist Speicherkomplexität: O(k)
Warum MinHeap? Wir behalten die k größten Elemente, indem wir einen Heap der Größe k unterhalten. Das kleinste Element (Wurzel des MinHeap) befindet sich am unteren Ende unseres "Top k"-Bereichs, wodurch es einfach zu entfernen ist, wenn wir ein größeres Element finden.
Für K kleinste Elemente
import { MaxHeap } from '@msnkr/data-structures';
function findKSmallest(arr: number[], k: number): number[] {
const maxHeap = new MaxHeap<number>();
for (const num of arr) {
maxHeap.insert(num);
if (maxHeap.size > k) {
maxHeap.remove(); // Größtes entfernen
}
}
return maxHeap.toArray().sort((a, b) => a - b);
}
console.log(findKSmallest(numbers, 3)); // [1, 2, 3]
Stream Median Finder
Den Median eines Zahlenstroms in Echtzeit finden.
Zwei-Heap-Ansatz
import { MinHeap, MaxHeap } from '@msnkr/data-structures';
class MedianFinder {
private maxHeap = new MaxHeap<number>(); // Untere Hälfte
private minHeap = new MinHeap<number>(); // Obere Hälfte
/**
* Eine Zahl zur Datenstruktur hinzufügen
* Zeitkomplexität: O(log n)
*/
addNum(num: number): void {
// Zuerst zum Max Heap (untere Hälfte) hinzufügen
this.maxHeap.insert(num);
// Ausgleichen: sicherstellen, dass Max der unteren <= Min der oberen
if (!this.minHeap.isEmpty() && this.maxHeap.peek() > this.minHeap.peek()) {
this.minHeap.insert(this.maxHeap.remove());
}
// Größen ausgleichen: maxHeap sollte gleich oder 1 Element mehr haben
if (this.minHeap.size > this.maxHeap.size) {
this.maxHeap.insert(this.minHeap.remove());
}
if (this.maxHeap.size > this.minHeap.size + 1) {
this.minHeap.insert(this.maxHeap.remove());
}
}
/**
* Den Median finden
* Zeitkomplexität: O(1)
*/
findMedian(): number {
if (this.maxHeap.size === 0) {
throw new Error('Keine Elemente');
}
if (this.maxHeap.size > this.minHeap.size) {
return this.maxHeap.peek(); // Ungerade Anzahl von Elementen
}
// Gerade Anzahl von Elementen
return (this.maxHeap.peek() + this.minHeap.peek()) / 2;
}
}
// Verwendung
const mf = new MedianFinder();
mf.addNum(1);
mf.addNum(2);
console.log(mf.findMedian()); // 1.5
mf.addNum(3);
console.log(mf.findMedian()); // 2
mf.addNum(4);
console.log(mf.findMedian()); // 2.5
Warum zwei Heaps?
- MaxHeap speichert die kleinere Hälfte (Wurzel = größte der kleinen Zahlen)
- MinHeap speichert die größere Hälfte (Wurzel = kleinste der großen Zahlen)
- Median ist entweder das Maximum der unteren Hälfte oder der Durchschnitt beider Wurzeln
Top K häufige Elemente
Die K häufigsten Elemente in einem Array finden.
import { MinHeap } from '@msnkr/data-structures';
interface FrequencyPair {
element: number;
frequency: number;
}
function topKFrequent(arr: number[], k: number): number[] {
// Häufigkeiten zählen
const freqMap = new Map<number, number>();
for (const num of arr) {
freqMap.set(num, (freqMap.get(num) || 0) + 1);
}
// Min Heap verwenden, um k häufigste zu behalten
const minHeap = new MinHeap<FrequencyPair>({
comparator: (a, b) => a.frequency - b.frequency,
});
for (const [element, frequency] of freqMap) {
minHeap.insert({ element, frequency });
if (minHeap.size > k) {
minHeap.remove(); // Am wenigsten häufiges entfernen
}
}
return minHeap.toArray().map((pair) => pair.element);
}
const numbers = [1, 1, 1, 2, 2, 3, 4, 4, 4, 4];
console.log(topKFrequent(numbers, 2)); // [1, 4]
K sortierte Arrays zusammenführen
Mehrere sortierte Arrays effizient mit einem Heap zusammenführen.
import { MinHeap } from '@msnkr/data-structures';
interface HeapNode {
value: number;
arrayIndex: number;
elementIndex: number;
}
function mergeKSorted(arrays: number[][]): number[] {
const minHeap = new MinHeap<HeapNode>({
comparator: (a, b) => a.value - b.value,
});
// Heap mit erstem Element aus jedem Array initialisieren
for (let i = 0; i < arrays.length; i++) {
if (arrays[i].length > 0) {
minHeap.insert({
value: arrays[i][0],
arrayIndex: i,
elementIndex: 0,
});
}
}
const result: number[] = [];
while (!minHeap.isEmpty()) {
const node = minHeap.remove();
result.push(node.value);
// Nächstes Element aus demselben Array hinzufügen
const nextIndex = node.elementIndex + 1;
if (nextIndex < arrays[node.arrayIndex].length) {
minHeap.insert({
value: arrays[node.arrayIndex][nextIndex],
arrayIndex: node.arrayIndex,
elementIndex: nextIndex,
});
}
}
return result;
}
// Verwendung
const arrays = [
[1, 4, 7],
[2, 5, 8],
[3, 6, 9],
];
console.log(mergeKSorted(arrays)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
Zeitkomplexität: O(N log k), wobei N die Gesamtzahl der Elemente ist, k die Anzahl der Arrays
Sliding Window Maximum
Das Maximum in jedem Sliding Window mit einem Heap finden.
import { MaxHeap } from '@msnkr/data-structures';
interface WindowElement {
value: number;
index: number;
}
function slidingWindowMaximum(arr: number[], k: number): number[] {
const maxHeap = new MaxHeap<WindowElement>({
comparator: (a, b) => a.value - b.value,
});
const result: number[] = [];
for (let i = 0; i < arr.length; i++) {
// Aktuelles Element hinzufügen
maxHeap.insert({ value: arr[i], index: i });
// Elemente außerhalb des Fensters entfernen
while (!maxHeap.isEmpty() && maxHeap.peek().index <= i - k) {
maxHeap.remove();
}
// Maximum des aktuellen Fensters hinzufügen
if (i >= k - 1) {
result.push(maxHeap.peek().value);
}
}
return result;
}
const arr = [1, 3, -1, -3, 5, 3, 6, 7];
console.log(slidingWindowMaximum(arr, 3)); // [3, 3, 5, 5, 6, 7]
K-größtes Element im Stream
Das K-größte Element beibehalten, während neue Zahlen eintreffen.
import { MinHeap } from '@msnkr/data-structures';
class KthLargest {
private minHeap: MinHeap<number>;
private k: number;
constructor(k: number, nums: number[]) {
this.k = k;
this.minHeap = new MinHeap<number>();
// Mit gegebenen Zahlen initialisieren
for (const num of nums) {
this.add(num);
}
}
add(val: number): number {
this.minHeap.insert(val);
// Nur k größte Elemente behalten
if (this.minHeap.size > this.k) {
this.minHeap.remove();
}
return this.minHeap.peek(); // K-größtes
}
}
// Verwendung
const kthLargest = new KthLargest(3, [4, 5, 8, 2]);
console.log(kthLargest.add(3)); // 4 (3. größtes: [8,5,4])
console.log(kthLargest.add(5)); // 5 (3. größtes: [8,5,5])
console.log(kthLargest.add(10)); // 5 (3. größtes: [10,8,5])
Heap Sort
Ein Array mit der Heap-Datenstruktur sortieren.
import { MaxHeap } from '@msnkr/data-structures';
function heapSort(arr: number[]): number[] {
// Heap aus Array aufbauen - O(n)
const maxHeap = new MaxHeap<number>(null, arr);
const sorted: number[] = [];
// Maximum wiederholt extrahieren - O(n log n)
while (!maxHeap.isEmpty()) {
sorted.unshift(maxHeap.remove()); // Am Anfang hinzufügen
}
return sorted;
}
const arr = [3, 1, 4, 1, 5, 9, 2, 6];
console.log(heapSort(arr)); // [1, 1, 2, 3, 4, 5, 6, 9]
Zeitkomplexität: O(n log n) Speicherkomplexität: O(n)
Task-Scheduling mit Abklingzeit
Tasks mit Abklingzeiten mit einem Heap planen.
import { MaxHeap } from '@msnkr/data-structures';
interface Task {
name: string;
frequency: number;
nextAvailable: number;
}
function scheduleTasksWithCooldown(
tasks: string[],
cooldown: number,
): string[] {
// Task-Häufigkeiten zählen
const freqMap = new Map<string, number>();
for (const task of tasks) {
freqMap.set(task, (freqMap.get(task) || 0) + 1);
}
// Max Heap nach Häufigkeit erstellen
const maxHeap = new MaxHeap<Task>({
comparator: (a, b) => a.frequency - b.frequency,
});
for (const [name, frequency] of freqMap) {
maxHeap.insert({ name, frequency, nextAvailable: 0 });
}
const result: string[] = [];
let time = 0;
while (!maxHeap.isEmpty()) {
const available: Task[] = [];
// Einen Zyklus ausführen
for (let i = 0; i <= cooldown && !maxHeap.isEmpty(); i++) {
const task = maxHeap.remove();
result.push(task.name);
task.frequency--;
if (task.frequency > 0) {
task.nextAvailable = time + cooldown + 1;
available.push(task);
}
time++;
}
// Tasks zurück hinzufügen, die weitere Ausführungen benötigen
for (const task of available) {
maxHeap.insert(task);
}
}
return result;
}
const tasks = ['A', 'A', 'A', 'B', 'B', 'C'];
console.log(scheduleTasksWithCooldown(tasks, 2));
// Mögliche Ausgabe: ['A', 'B', 'C', 'A', 'B', 'idle', 'A']
Leistungsmerkmale
| Operation | MinHeap/MaxHeap | Beschreibung |
|---|---|---|
| Insert | O(log n) | Element hinzufügen |
| Remove/Extract | O(log n) | Wurzel entfernen |
| Peek/Top | O(1) | Wurzel anzeigen |
| Heapify | O(n) | Aus Array aufbauen |
| Find | O(n) | Element suchen |
Wann Heaps verwenden
✅ Gut für:
- K größte/kleinste Elemente finden
- Prioritätsbasierte Verarbeitung
- Median-Wartung
- K sortierte Sequenzen zusammenführen
- Scheduling mit Prioritäten
❌ Nicht ideal für:
- Suche nach beliebigen Elementen
- Sortierte Reihenfolge beibehalten (verwenden Sie RedBlackTree)
- FIFO/LIFO-Operationen (verwenden Sie Queue/Stack)